Structural Topic Model for Latent Topical Structure Analysis
نویسندگان
چکیده
Topic models have been successfully applied to many document analysis tasks to discover topics embedded in text. However, existing topic models generally cannot capture the latent topical structures in documents. Since languages are intrinsically cohesive and coherent, modeling and discovering latent topical transition structures within documents would be beneficial for many text analysis tasks. In this work, we propose a new topic model, Structural Topic Model, which simultaneously discovers topics and reveals the latent topical structures in text through explicitly modeling topical transitions with a latent first-order Markov chain. Experiment results show that the proposed Structural Topic Model can effectively discover topical structures in text, and the identified structures significantly improve the performance of tasks such as sentence annotation and sentence ordering.
منابع مشابه
Traffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملThe Structural Topic Model and Applied Social Science∗
We develop the Structural Topic Model which provides a general way to incorporate corpus structure or document metadata into the standard topic model. Document-level covariates enter the model through a simple generalized linear model framework in the prior distributions controlling either topical prevalence or topical content. We demonstrate the model’s use in two applied problems: the analysi...
متن کاملIntra-Speaker Topic Modeling for Improved Multi-Party Meeting Summarization with Integrated Random Walk
This paper proposes an improved approach to extractive summarization of spoken multi-party interaction, in which integrated random walk is performed on a graph constructed on topical/ lexical relations. Each utterance is represented as a node of the graph, and the edges’ weights are computed from the topical similarity between the utterances, evaluated using probabilistic latent semantic analys...
متن کاملPresentation of Economic Regeneration Model in Historic Fabric Based on Order in Structural Functionalism Theory
Historic fabric can perform an important role in the development of cities. Urban sustainable regeneration is one of the recent approaches in historic fabric. In this approach, all indicator of sustainable development including economic, social, cultural, management and environmental dimensions have been used in conservation of the historic fabric. All the principles of sustainable development ...
متن کاملTopic Model Diagnostics: Assessing Domain Relevance via Topical Alignment
The use of topic models to analyze domainspecific texts often requires manual validation of the latent topics to ensure that they are meaningful. We introduce a framework to support such a large-scale assessment of topical relevance. We measure the correspondence between a set of latent topics and a set of reference concepts to quantify four types of topical misalignment: junk, fused, missing, ...
متن کامل